
Introduction Setup Results on single device Results on multiple devices Conclusions

Comparison of Parallel Programming Models
on Intel MIC Computer Cluster

CHENGGANG LAI1, ZHIJUN HAO2, MIAOQING HUANG1,
XUAN SHI1 AND HAIHANG YOU3

1University of Arkansas, 2Fudan University,
3Chinese Academy of Sciences

ASHES WORKSHOP, Phoenix May 19, 2014
1 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

2 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Introduction

Accelerators/coprocessors provide a promising solution for
achieving both high performance and energy efficiency

Intel MIC accelerated clusters: Tianhe-2, Stampede, Beacon
GPU accelerated clusters: Titan, Tianhe, Blue Waters

Multiple parallel programming models on Intel MIC accelerated
clusters

Native mode
Offload mode
Hybrid mode

Use two benchmarks with different communication patterns to
test the performance and the scalability of a single MIC
processor and an MIC cluster

3 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

MIC architecture (Knights Corner)

M
em

or
y

Co
nt

ro
lle

r

Sy
st

em
 &

 I/
O

In
te

rf
ac

e

M
em

or
y

Co
nt

ro
lle

r

Sp
ec

ia
l F

un
ct

io
n

Multi-Threaded
Wide SIMD

I$ D$

Multi-Threaded
Wide SIMD

I$ D$

Multi-Threaded
Wide SIMD

I$ D$

Multi-Threaded
Wide SIMD

I$ D$

. . .

. . .

L2 Cache

Contain up to 61 low-weight processing cores
Each core can run 4 threads in parallel

High-speed bi-directional, 1024-bit-wide ring bus
512 bits in each direction

4 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

MIC programming models

Native mode

MPI directly on MIC cores

Offload mode

MPI on CPUs
Offload computation to MIC
using OpenMP 5 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

6 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Application communication patterns

Source Data Kriging Interpolation Game of Life
Kriging interpolation

Embarrassingly parallel
Game of Life

Intense communication

7 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Kriging interpolation

The value at an unknown point should be the average of the
known values of its neighbors

Ẑ (x , y) =
∑k

i=1 wiZi

8 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Kriging interpolation

◦: points with known values
+: points with unknown values to be interpolated

9 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Kriging interpolation benchmark

Problem size: 171 MB
29 MB: 2,191 sample points
37 MB: 4,596 sample points
48 MB: 6,941 sample points
57 MB: 9,817 sample points

Output: 4 grids of 1,440×720
Use 10 closest sample points to estimate one point in the grid
4 grids are computed in sequence
For each grid, the computation is partitioned along the column

10 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Game of Life

The universe of the GOL is a two-dimensional grid of cells
one of two possible states, alive (‘1’) or dead (‘0’)

Every cell interacts with its eight neighbors to decide its fate in
the next iteration of simulation
The status of each cell is updated for 100 iterations

The statuses of all cells are updated simultaneously in each
iteration

11 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Game of Life

Rules:
Any live cell with fewer than two live neighbors dies, as if caused
by under-population
Any live cell with two or three live neighbors lives on to the next
generation
Any live cell with more than three live neighbors dies, as if by
overcrowding
Any dead cell with exactly three live neighbors becomes a live
cell, as if by reproduction

12 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Game of Life

Rules:
Any live cell with fewer than two live neighbors dies, as if caused
by under-population
Any live cell with two or three live neighbors lives on to the next
generation
Any live cell with more than three live neighbors dies, as if by
overcrowding
Any dead cell with exactly three live neighbors becomes a live
cell, as if by reproduction

13 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Game of Life

Rules:
Any live cell with fewer than two live neighbors dies, as if caused
by under-population
Any live cell with two or three live neighbors lives on to the next
generation
Any live cell with more than three live neighbors dies, as if by
overcrowding
Any dead cell with exactly three live neighbors becomes a live
cell, as if by reproduction

14 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Game of Life

Rules:
Any live cell with fewer than two live neighbors dies, as if caused
by under-population
Any live cell with two or three live neighbors lives on to the next
generation
Any live cell with more than three live neighbors dies, as if by
overcrowding
Any dead cell with exactly three live neighbors becomes a live
cell, as if by reproduction

15 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Game of Life: communication patterns

The boundary rows need to be sent to neighbor processing
nodes between iterations

16 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Computer platform

Beacon system
A Cray CS300-AC cluster
48 compute nodes and 6
I/O nodes

Compute node
2 Intel Xeon E5-2670
8-core CPUs
4 Intel Xeon Phi 5110P
coprocessors
256 GB RAM
960 GB SSD storage

Intel Xeon Phi 5110P
coprocessor

60 MIC cores at 1.053 GHz
8 GB GDDR5 on-board
memory

17 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

18 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

19 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Kriging interpolation on a single MIC processor
(unit: second)

Number of MIC cores
Programming model: MPI@MIC

10 20 30 40 50 60
Read 0.65 0.60 0.66 0.72

NA∗

0.79
Interpolation 2734.45 1353.48 921.76 664.74 455.34

Write 9.44 9.21 11.04 8.04 7.95
Total 2744.54 1363.30 933.46 673.50 464.09

Programming model: Offload
10 20 30 40 50 60

Read 0.04 0.05 0.04 0.04 0.04 0.04
Interpolation 2758.22 1570.75 1040.44 784.30 632.65 548.15

Write 1.77 1.99 1.65 1.44 1.45 1.57
Total 2760.03 1572.78 1042.12 785.78 634.14 549.75

∗The work could not be distributed into 50 cores evenly.

MPI@MIC
The computation of 720 columns is distributed evenly among MPI
processes (ranks)

Offload
Use OpenMP to parallelize the for loops

20 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Kriging Interpolation on a single MIC processor

1 0 2 0 3 0 4 0 5 0 6 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

Int
erp

ola
tio

n T
im

e (
s)

N u m b e r o f C o r e s

 O f f l o a d
 M P I @ M I C

21 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Game of Life on a single MIC processor
(unit: second)

Problem Size Number of MIC cores
Programming model: MPI@MIC

10 20 30 40 50 60
8192×8192 82.85 42.27 32.56 24.91 21.37 23.15

16384×16384 338.57 173.57 131.10 103.30 94.41 56.31
Programming model: Offload

10 20 30 40 50 60
8192×8192 405.35 203.23 168.78 151.34 131.94 112.19

16384×16384 1506.47 1017.12 738.46 670.12 586.65 462.87

1 0 2 0 3 0 4 0 5 0 6 0
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0

Co
mp

uta
tio

n T
im

e (
s)

N u m b e r o f C o r e s

 O f f l o a d
 M P I @ M I C

8,192×8,192

1 0 2 0 3 0 4 0 5 0 6 0
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0

1 0 0 0
1 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0
1 5 0 0

Co
mp

uta
tio

n T
im

e (
s)

N u m b e r o f C o r e s

 O f f l o a d
 M P I @ M I C

16,384×16,384
22 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

23 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Kriging interpolation on single devices

MIC (60 cores) CPU (Xeon E5-2670) Nvidia GPU
MPI Offload 8 threads 16 threads C2075 K20

Read 0.79 0.04 0.01 0.01 0.01 0.01
Interpolation 455.34 548.15 330.11 182.60 23.87 10.90

Write 7.95 1.57 9.85 10.27 1.68 1.68
Total 464.09 549.75 339.96 192.86 25.55 11.77

M I C (M P I)
M I C (O f f l o a d)

C P U (8 t h r e a d s)
C P U (1 6 t h r e a d s) C 2 0 7 5 K 2 00

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0

Int
erp

ola
tio

n T
im

e (
s)

D e v i c e

The performances of
MIC and CPU are in
the same order of
magnitude

24 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Game of Life on single devices (Unit: second)

MIC (60 cores) CPU (Xeon E5-2670) Nvidia GPU
MPI Offload 8 threads 16 threads C2075 K20

8192×8192 23.15 112.19 12.03 8.13 15.36 3.25
16384×16384 56.31 462.87 48.22 32.65 58.44 12.58
32768×32768 NA NA 217.33 114.98 274.03 46.99

The performance of MPI@MIC: same order of magnitude as
CPU and C2075 GPU
Offload on MIC: one order of magnitude worse
K20 GPU: one order of magnitude better

25 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

26 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Three parallel programming models

MPI@MIC
MPI-based parallel implementation on Beacon. The Intel Xeon
Phi 5110P is used for data processing. In this implementation,
each MIC core will directly host one single-thread MPI process.
Therefore, if m Xeon Phi coprocessors are used, m × 60 MPI
processes are created in the parallel implementation

MPI@MIC+OpenMP
Each MIC core on Intel Xeon Phi 5110P can support up to 4
threads. In this implementation, 4 threads are created in each MPI
process running on a MIC core

MPI@CPU+offload
In this implementation, the MPI processes are running on the
CPU. The data processing is offloaded to MIC through OpenMP

27 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

28 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Kriging interpolation under various programming
models (unit: second)

Number of MPI@MIC MPI@MIC+OpenMP(4 threads)
Processors Read Interpolation Write Total Read Interpolation Write Total

2 1.24 232.43 12.24 245.90 0.57 60.43 8.82 69.82
4 1.27 116.34 16.44 134.05 0.51 36.54 122.53 159.59
8 1.23 61.48∗ 54.43 117.14 0.50 20.43∗ 240.33 261.26

16 1.31 36.74∗ 300.23 338.28 0.52 12.33∗ 210.45 223.30
Number of MPI@CPU+offload
Processors Read Interpolation Write Total

2 0.18 280.83 1.60 282.61
4 0.04 141.03 1.27 142.33
8 0.04 74.30 1.19 75.53

16 0.04 38.54 5.94 44.51

∗Only 360 or 720 MIC cores are used in the computation with 8 or 16 processors,
respectively.

MPI@MIC+OpenMP: ∼3 times faster than MPI@MIC

29 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Kriging interpolation under various programming
models

2 4 8 1 6
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

Int
erp

ola
tio

n T
im

e (
s)

N u m b e r o f P r o c e s s o r s

 M P I @ C P U + o f f l o a d
 M P I @ M I C
 M P I @ M I C + O p e n M P

30 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Game of Life under various programming models
(unit: second)

Number of 8,192×8,192 16,384×16,384
Processors MPI MPI@MIC+ MPI@CPU+ MPI MPI@MIC+ MPI@CPU+

@MIC OpenMP(4 threads) offload @MIC OpenMP(4 threads) offload
2 14.56 7.99 169.12 48.39 33.11 760.20
4 11.63 8.04 80.50 46.31 24.06 405.66
8 7.84 9.28 89.03 39.78 22.98 365.23
16 7.18 8.74 82.51 35.30 23.60 370.65

Number of 32,768×32,768
Processors MPI MPI@MIC+ MPI@CPU+

@MIC OpenMP(4 threads) offload
2 194.15 149.43 2926.34
4 169.54 104.14 1512.72
8 157.73 106.24 1502.51
16 128.40 110.99 1517.89

All three programming models lose strong scalability
It is critical to keep a balance for communication intensive
applications

31 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Game of Life under various programming models

2 4 8 1 6
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0

Co
mp

uta
tio

n T
im

e (
s)

N u m b e r o f P r o c e s s o r s

 M P I @ C P U + o f f l o a d
 M P I @ M I C
 M P I @ M I C + O p e n M P

8,192×8,192

2 4 8 1 6
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0
6 5 0
7 0 0
7 5 0

Co
mp

uta
tio

n T
im

e (
s)

N u m b e r o f P r o c e s s o r s

 M P I @ C P U + o f f l o a d
 M P I @ M I C
 M P I @ M I C + O p e n M P

16,384×16,384

2 4 8 1 6
0

2 5 0
5 0 0
7 5 0

1 0 0 0
1 2 5 0
1 5 0 0
1 7 5 0
2 0 0 0
2 2 5 0
2 5 0 0
2 7 5 0
3 0 0 0

Co
mp

uta
tio

n T
im

e (
s)

N u m b e r o f P r o c e s s o r s

 M P I @ C P U + o f f l o a d
 M P I @ M I C
 M P I @ M I C + O p e n M P

32,768×32,768
32 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

33 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Game of Life using MPI@MIC+OpenMP
programming model (Unit: second)

Number of 8,192×8,192 16,384×16,384 32,768×32,768
Processors 4 threads 8 threads 4 threads 8 threads 4 threads 8 threads

2 7.99 10.94 33.11 32.92 149.43 110.37
4 8.04 9.03 24.06 27.94 104.14 109.79
8 9.28 8.39 22.98 25.69 106.24 100.79

16 8.74 10.77 23.60 27.11 110.99 110.67

No significant performance improvement for adding more
threads on each core

34 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

35 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Game of Life (32,768×32,768) using
MPI@CPU+offload programming model (unit: second)

Number of # of OpenMP threads offloaded to each MIC processor
Processors 10 20 30 40 50 60

2 10779.47 5578.45 4077.90 3173.22 2870.26 2926.34
4 5807.45 3113.00 2345.75 1935.45 1431.62 1512.72
8 6298.11 3891.83 2540.66 1806.12 1434.91 1502.51

16 6923.38 4549.69 2630.39 2354.70 2104.73 1517.89

1 0 2 0 3 0 4 0 5 0 6 0
0

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

1 0 0 0 0
1 1 0 0 0

Co
mp

uta
tio

n T
im

e (
s)

N u m b e r o f T h r e a d s O f f l o a d e d

 2 M I C P r o c e s s o r s
 4 M I C P r o c e s s o r s
 8 M I C P r o c e s s o r s
 1 6 M I C P r o c e s s o r s More cores do not

necessarily bring
better performance

36 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

37 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Performance of Game of Life (32,768×32,768) under different MPI
configurations (MPI@MIC)

2 x 6 0 4 x 3 0 8 x 1 5
1 9 4
1 9 6
1 9 8
2 0 0
2 0 2
2 0 4
2 0 6
2 0 8

Co
mp

uta
tio

n T
im

e (
s)

M P I C o n f i g u r a t i o n
Inter-card communication takes longer time than intra-card
communication

38 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

39 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Hybrid MPI is better than native MPI

Hybrid MPI
MPI processes run on both MIC cores and CPU cores

Kriging interpolation (57 MB data set) on Beacon
16 MPI processes on one Xeon E5-2670 CPU: 46.02 seconds
16 MPI processes on one Xeon E5-2670 CPU + 14 MPI
processes on one MIC card: 24.75 seconds

Game of Life (16,384×16,384) on a separate workstation
120 MPI processes on two MIC cards: 30 seconds
120 MPI processes on two MIC cards + 12 MPI processes on one
Xeon E5-2620 CPU: 27.42 seconds

40 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Outline

1 Introduction

2 Experiment setup

3 Results on single device
Scalability on a single MIC processor
Performance comparison of single devices

4 Results on multiple devices
Comparison among three programming models
Experiments on the MPI@MIC+OpenMP programming models
Experiments on the MPI@CPU+offload programming models
Experiments on the distribution of MPI processes
Hybrid MPI vs native MPI

5 Conclusions

41 / 42

Introduction Setup Results on single device Results on multiple devices Conclusions

Conclusions

Native mode typically outperforms offload mode
Further improve the performance by running multiple threads on
each MIC core
Schedule MPI processes to as few MIC processors as possible
to reduce the cross-processor communication overhead
Hybrid mode can outperform native mode

42 / 42

	Introduction
	Experiment setup
	Results on single device
	Scalability on a single MIC processor
	Performance comparison of single devices

	Results on multiple devices
	Comparison among three programming models
	Experiments on the MPI@MIC+OpenMP programming models
	Experiments on the MPI@CPU+offload programming models
	Experiments on the distribution of MPI processes
	Hybrid MPI vs native MPI

	Conclusions

